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1 Introduction

Models involving nonlinear partial differential equations become more and more widespread as
theoretical and computational tools for their analysis advance. Well-known (and still partially
unsolved) problems include, for example, the Euler and Navier-Stokes equations modeling the
motion of a fluid (or air) which is a central problem in aircraft design. New computational tools
make possible simulations, predictions, model development through inverse problems and inclusion
of nonlinear effects in commercial finite element packages. In many areas new, more refined models
are needed as modern applications ’outgrow’ the traditional linear assumptions. In some cases
the need for the accurate prediction of transient phenomena makes the inclusion of nonlinearities
imperative.

An important area where nonlinear models have a potential impact is the rubber industry.
Elastomeric materials can be found in diverse engineering applications e.g., in springs, bearings,
shock absorbing bushes, helicopter rotor suspensions, tires, vibration suppression devices, bridge
supports. They appear both as passive damping devices and actively controllable smart materials.
These new applications motivate the need for a better understanding of the mechanical behavior
of rubber-like composites which is a necessary first step in the design of both passive and active
material devices [11, 16]. The dynamic behavior of elastomers is very complex. They exhibit sig-
nificant nonlinearities in both geometric and material characteristics. Typical nonlinear behaviors
of the stress and strain in rubber materials under finite deformation include a continuous increase
of strain at decreasing rates upon loading, variable magnitudes of the strain subject to rates of
loading, and different loading and unloading paths due to hysteretic memory effects. In addition,
the current state of the material depends on the strain/strain-rate history, the type and amount of
filler in the material and the temperature. The nonlinear effects are particularly strong for large
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strains and for highly filled elastomers. Our focus in modeling is to accurately capture the nonlinear
dynamic and hysteretic effects.

2 Models for elastomeric materials

Traditionally there are two approaches to modeling rubber materials. There are physics or molecular-
based theories that try to describe the microscopic behavior of the particles and fibers that consti-
tute the material, and there are phenomenological models that treat the material as a continuum
[12, 14, 15, 21, 22, 23] . Phenomenological models are based on the assumption that the material
is isotropic, i.e., the long chain molecules are randomly oriented in the unstrained state. Loading
causes orientation of the molecules, but it is in the direction of the loading so the assumption of
isotropy remains valid. Most such models utilize the strain energy density to describe the state of
the material. However, the proposed strain energy functions can typically capture only the cur-
rent state of the rubber and cannot distinguish between different loading or unloading histories.
Thus, these models cannot accurately describe the significant hysteresis exhibited by filled rubber
samples.

2.1 Model development

In developing a model for the dynamic behavior of filled elastomers we considered two basic de-
formations: extension and shear. Our hysteretic models are based on the basic models developed
by Banks, et.al., in [4, 6]. First we considered the model of a rubber rod under uniaxial tension.
(Our shear results are briefly summarized at the end of Section 2.2.) The Timoshenko theory for
longitudinal vibrations of a rubber bar with a tip mass leads to

0%u &%u do
pACW_ (CD%JFAC%) =0 O<z<? (2.1)
82’11, 8211,
M5 (t,0) = — (Aca + CD%) lz=e + f(t) + Mg (2.2)
u(t,0) =0 (2.3)

u(0,z) = @o, u(0,z) =0,

where u is the deformation in the z direction, p is the mass density, f(¢) is the applied external
force, A, is the cross sectional area, M is the tip mass, g is the gravitational constant and o is the
stress. This model includes a Kelvin-Voigt type term as a first approximation to damping. The
stress-strain relationship in the basic model is

where € is the finite strain (since we are interested in large deformations) and it is given by
ou 1 (0u\? 1,
P T (e - 2.5
¢ 8w+2(8x) 8+25’ (2:5)
ou

where € = 37 is the usual infinitesimal strain of linear elasticity. However, modeling the nonlinear
behavior between the stress and the finite strains € (which are themselves nonlinear functions of the
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Figure 1: Rod with tip mass under tension.

infinitesimal strains ¢) can be equivalently formulated in terms of nonlinear relationships between
the stress and the infinitesimal strains e. Hence we equivalently assume

ou
U(t) = ge(ax) (2.6)
instead of a similar law involving the finite strains é.

The well-posedness of the initial boundary value problem associated with equations (2.1)-(2.4)
was shown by Banks, Gilliam, Shubov in [3], while the convergence properties of the corresponding
parameter estimation problem were established by Banks, Pinter in [7]. These results are valid for
a broad class of nonlinearities. This is important since comparison between experimental data and
numerical calculations suggested that the neo-Hookean nonlinearity (found in literature as a first
approximation to the nonlinearity exhibited by rubber materials) is not adequate to describe the
behavior of filled elastomers [6].

An adequate form of g, and the unknown constants p and C'p were determined using para-
meter estimation techniques. Data for the inverse problem were provided by dynamic free release
experiments. The elastomer was suspended vertically with the top end (z = 0) fixed, and a frame
was attached to the lower end (see Figure 1). Varying amounts of extra mass were attached to
this frame, which also served to house an accelerometer. Another accelerometer, placed at the top
of the sample, was used to verify the clamped boundary condition at the fixed end. For the free
release experiment, the rubber rod was lifted together with the frame and the tip mass so that no
compression or extension occurred. Then the support was removed, allowing the mass to fall freely.
This type of experiment was repeated with unfilled and lightly filled carbon black samples, while a
similar experiment was done with a highly filled sample with a 9.29 1b tip mass.

The force data collected by the load cell on top of the sample were used in estimating the
unknown parameters ¢ = {ge, p,Cp} in (2.1)-(2.4) with (2.6), by minimizing

7@ = 15 - AP ,0:0))2
q _21-:1 Z4 cO o i, U5 g4

over ¢ in some admissible parameter space (). Here z;, « = 1,..., N represent the experimental
observations of the force at the fixed end, and w is the solution of (2.1)-(2.4) corresponding to the
parameters q.



Computational results indicated that (1) a nonlinear function g is necessary in the stress-
strain relationship, (2) the stress-strain relationship (2.6) is adequate to describe unfilled rubber
samples (Figure 2) and (3) to capture the dynamics of filled elastomers hysteresis must be taken
into account.
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Figure 2: (left) Time domain approximation with a four-term piecewise linear §, and (right) the
FFT of the solution and the data.

Based on models for hysteretic damping in the literature (see [8] and references therein) we
assumed a Boltzmann-type stress-strain law of the form

(1) = gelel@) + [ V(6= 9) 5 go(e(e), (), (2.7

where Y is the memory kernel, and g. and g, are nonlinear functions accounting for the elastic
and viscoelastic nonlinear responses of the elastomer, respectively. This stress-strain law implies
that the stress depends not only on the current strain but also on the history of the strain and the
strain-rate. It is very important to note that the stress-strain law (2.7) contains various standard
internal strain or internal variable formulations as special cases. The ADF models of Lesieutre [19],
[20] for composite materials exhibiting both elastic and anelastic displacement fields are formulated
on the assumption that the host elastic material contains anelastic materials with internal strains
€1 which are elastic strain driven. That is, the constitutive laws have the form

o(t) = Ere(t) — Eze1(2), (2.8)
where the internal strain is given by

&1 (t) + c1e1 (t) = Cz&?(t) (2.9)

&1 (0) = 0,

or equivalently,

t
e1(t) :/ coe 1 =3)g(5)ds.
0

Several generalizations of this formulation exist, e.g., Johnson et.al. [18], suggest that the internal
strain is strain rate driven, i.e.,

€1 (t) + clel(t) = CQé(t). (2.10)
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Our Boltzmann-type law (2.7) (under appropriate assumptions on the past memory from —oo to
0) corresponds to an internal strain model of the form:

Er(t) + cren(t) = %gv(s(t),é(t)) (2.11)
61(0) =0.

This form was chosen after we found that neither (2.9) nor (2.10) provided laws that could describe
our data.

Experimental observations of the quasi-static behavior of elastomers indicate that these mate-
rials possess different nonlinear viscoelastic responses in loading (¢ > 0) and unloading (¢ < 0).
This led to our choice of a piecewise continuous form for the viscoelastic response function g,:

gu(e(s),€(s)) = {gm'(s(s)) £(s) > 0 (2.12)

gwale(s)) £(s) <O0.

Here we require g,; and g,q to be continuous (and generally nonlinear) functions. This difference
between loading and unloading is more pronounced as the amount of filler increases in the material.
We define the points t;, 2 = 1,..., M as the “turning points,” or the points in time for which € = 0.
The function g, need not be continuous at the turning points, so we must interpret the derivatives
n (2.7),(2.11) as distributional derivatives. That is, delta functions are involved in differentiating
the composite functions g, (e, €), or equivalently, integration by parts is valid. For experimental
and computational purposes, we further assume that any motion in the material prior to each
experiment is negligible. That is, we assume that %g,(e(t),(t))dt ~ 0 for all t < 0. Hence we may
approximate (2.11) by

o(t) = ge(e(?)) + /Ot Y(t- 8)%%(6(8), £(s))ds. (2.13)

We integrated by parts in (2.13) and obtained the model in variational form

(¥ (¥ 2 U 2'U/
i~ it — - (Acge@—m) AV Ogo(gts o)+ Ae [ V(b= 9)0u(GE6), g ())ds
K
FAS Y~ 1) (1 g (1) — o (m))]) = F(t) V" (214)
k=1
u(t,0) =0, u(0,z) = o, ut(0,2) =0 (2.15)

for an appropriately chosen Hilbert space V. This presumes, of course, that we have sufficient
smoothness so that evaluation of % at t; makes sense and %(gm(%(t )), 2 pirs (gvd(aw( i) € V*.
For this particular example, one takes V = H}(0,£) = {¢ € L*(0,¢)|¢' € L?(0,£),$(0) = 0}
and p = pA. — Mdy, F(t) = —f(t)ds, where dg(z) is the Dirac function with atom at xz = £.
The important question of well-posedness of the system (2.14)-(2.15) is treated carefully in [9].
We have shown that under certain assumptions there exists a unique weak solution of the system
(2.14)-(2.15). This result uses the Minty-Browder monotonicity method to treat the nonlinearities
in the system and is valid for a broad range of elastic and viscoelastic response functions.



2.2 Experimental and computational results

We first tested this model in the quasi-static behavior of filled rubber samples in uniaxial tension.
Two different types of quasi-static pull tests were conducted. The first type (Type I) includes a
sequence of loading and unloading the sample to produce load-displacement curves with decreasing
maximum strain levels. In the second type of experiment (Type II), we created a sequence of strain
loops that have decreasing maximum strain levels as before, but instead of a fixed minimum strain
level we used progressively increasing minimum strain levels. (Full description of the quasi-static
and dynamic tests and results are given in our paper [10].) We tried a number of linear and
nonlinear functions for g, and g,, including the special cases of g, and g, linear with g, = gyi = guq-
The relative errors discussed in [25] suggested that nonlinear functions are necessary for both g, and
gv- Additional curve fitting studies outlined in [25] led to our choice of cubic polynomials for ge, gy
and g,q. That is, we chose parameterized nonlinearities of the form g.(z) = Y3, E;z’, gyi(z) =
3 L airt,  gea(z) = Y2, birt, where Ej,a;,b;, i = 1,2,3 are real constants. Note that these
response functions include no constant terms. Here we require g.(0) = g4;(0) = ¢»q(0) = 0 so that
a zero strain will yield a zero stress according to our stress-strain relation. Based on additional
studies detailed in [25], we chose an exponential form Y (s) = e~¢1% for the memory kernel. Such
an exponential form generates totally nested hysteresis loops in the stress-strain curves, a feature
also observed in our data.

The parameters C1, E;,a; and b; were estimated by setting up a least squares minimization
problem using one or two of the outer stress and strain data loops from the experiments. Figure 3
shows results for a highly filled sample in Type I and Type II experiments, respectively. While
the inverse problem was ’trained’ on the largest loop only in Type I, and the two outer loops in
the Type II experiment, we can see that there is a very good agreement between the data and the
model predicted inside loops.

AP225

AP225
T

data
- - computed

data
-=- computed|

stress

Figure 3: (left) Model prediction for Type I CB-h data and (right)Model prediction for Type II
CB-h data .

Similar results were obtained for medium-filled natural rubber and silica-filled silicon samples.
More details are given in [10].

Our hysteretic model (2.14)-(2.15) was also tested on a series of dynamical experiments with
different types of filled rubber samples. We used the same free release experiments that were
described earlier. Since the dynamical behavior of the unfilled natural rubber sample was adequately
described by the basic model without hysteresis, we began our hysteresis investigations using the



lightly filled sample. For given p,ge, g, and Y we solve the partial differential equation (2.14)-
(2.15) forward in time, and obtain the displacement u(¢,z), 0 < z < £. The data collected in these
experiments provides us with the force at the top of the sample (z = 0), and we compare it to the
force predicted by the model at the same point, given by

Aco(t,0) = |Cpig(t,0) + Acge(us(t,0)) + Ac /OtY(t - 3)%gv(uz(3a0)aaw(3a0))d3 )

where we use our computed solution u(t, z) to find u,(¢,0) and 7,(s,0). Our goal is to find p, ge, gy
and Y so that the model predicted force at z = 0 best matches the data collected by the load cell. A
parameter identification problem was set up to find p, E1, Fs, F3, a1, a2, as, by, b, bs, C (collectively
denoted by ¢) such that

M
J(g) = |z — Aco(ti, 0;)]
=1

is minimized. Here the z;, i = 1,..., M are the data collected by the load cell, and o(t;,0;q) is
given by the model. The particular forms for g., g, and Y were motivated by their success in the
quasi-static case. In our computations we used linear splines for spatial discretization. In solving
the system (2.14)-(2.15) forward in time, the treatment of the hysteresis integral proved to be very
time consuming. Since this computation needs to be repeated for each set of parameters during the
optimization, the time required for the computational parameter identification process was very
extensive. Hence, we formulated an equivalent system to (2.14)-(2.15) (with g, 1 = 0) using
internal variables and used it in the above framework for our subsequent calculations. This system
is given by

. 0 . %

Pt — Cplgyt — 92 (Acge(ug) + Aee1) =F(t) inV (2.16)
. d .

€1 =—Cie1 + E(gv(uwauw)) (2'17)
u(t,0) =0, u(0,z) =u(0,2) =0, £1(0,2) =0 (2.18)
u(t,z) =0, t<0 (2.19)

where, in general, the derivatives of g, in (2.17) are distributional in the sense described earlier. The
parameter identification problem was solved using MATLAB optimization routines. Qur results
for the identification problem are shown in Figure 4, where a 3 1b tip mass was used at the bottom
of the sample.

The identification problem was also run on data obtained from experiments with 2 Ib and
1 1b tip mass added to the lightly filled sample. We found a similar good agreement between
data and the model [10]. However, the identified coefficients were not entirely consistent across
experiments, although they should describe the same material. This variation is probably caused
by the considerably different strain and strain rate ranges involved in the experiments, and suggests
that the model should be refined to account for these differences.

We repeated the experiment with a highly filled sample having a 9.29 1b tip mass. In this case
our best fit depicted in Figure 5 (left) has deteriorated. Thus we turned to a modification of our
model to obtain a better approximation to the force data.

Motivated by similar problems involving hysteretic effects and internal strain models we next
tried to approximate the load cell data using two internal variables, €1, 9. Thus, we considered the
model:
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Figure 5: (left) Best approximation for the highly filled sample with one internal variable using
data in the time interval [0,0.95] and (right)Best approximation for the highly filled sample with
two internal variables on the full time interval. Identification based on data from the time interval

[0,0.95].
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Figure 6: (left) Approximation result for the highly filled sample in shear with ~ 100% strain initial
condition and (right) The same parameter set simulating the highly filled sample in shear with =
70% strain initial condition.

pte — Cplggt — % (Acge(uz) + Ace1 + Ac‘52) = F(t) in V* (2'20)
. d .

g1 =—Cie1 + %(gv(uwauz)) (2.21)
. d .

€g = —Cae1 + %(gv(uw, TUg)) (2.22)
u(t,0) =0, u(0,z) =g, ut(0,2) =0 (2.23)
€1(0,2) =0, e2(0,z) =0. (2.24)

The parameter identification process gave very satisfactory results as shown in Figure 5 (right).
The relative error between the data and the computed force is 4.1%. We remark that this approx-
imation was obtained by using data only from the time interval [0,0.95], and resulted in a model
that accurately simulated the data on the interval [0, 1.6].

We further note that the previous model development and identification process was repeated
for highly filled elastomers in shear. Special experiments were designed and carried out at Lord
Corporation to test this highly hysteretic rubber material in simple shear. Our model included a
nonlinear elastic response function and nonlinear viscoelastic response functions through a Boltz-
mann integral term (in an internal variable formulation as in (2.16)-(2.17)). Results of the para-
meter estimation problem are depicted on Figure 6. The same parameter set describes two runs of
the same experiment with different initial loading conditions with very good accuracy.

2.3 Nonlinear internal variable models

Our last result for the highly filled sample and the variation in the parameters for the lightly filled
rubber rod suggested that we might try to generalize our model to better describe the behavior of
highly hysteretic samples. Thus we next considered internal variable models with nonlinear internal



dynamics:

pii — CpUggt 331' (Acge(ug) + Ace1) = F(t) in V¥ (2.25)
=~ (e1) + (o (ua, ) (2:20
u(t,0) =0, u(0,z) = ¢, ut(0,2) =0 (2.27)
£1(0,) = 0. (2.28)

In [1] we showed that this system has a unique weak solution. We also note that we in fact gener-
alized the previous existence-uniqueness result in the sense that we no longer require monotonicity
of the nonlinear functions g, gy, g»q- Instead, they are assumed to satisfy a local Lipschitz property
and other assumptions similar to those used before. We remark that similar techniques were suc-
cessfully employed to establish existence-uniqueness of weak solutions for linear evolution equations
of second order in ¢ in [13] and for semilinear second order evolution equations where the nonlinear
forcing term satisfies a global Lipschitz condition in [17]. In [2] we used similar techniques to study
a nonlinear beam equation where the nonlinearity satisfies only a local Lipschitz condition.

3 Concluding Remarks

In the above note we outlined our progress to date in the development of nonlinear dynamic models
for inactive filled elastomers. Substantial experimental validation for our approach is provided
both in the quasi-static and dynamic cases in uniaxial tension and in the dynamic case in simple
shear.Current efforts involve refinements to these models and a comparison with newly developed
molecular based models [5].
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